Formulation, Characterisation and Stabilisation of Buccal Films for Paediatric Drug Delivery of Omeprazole

Journal Title: AAPS PharmSciTech - Year 2015, Vol 16, Issue 4

Abstract

This study aimed to develop films for potential delivery of omeprazole (OME) via the buccal mucosa of paediatric patients. Films were prepared using hydroxypropylmethylcellulose (HPMC), methylcellulose (MC), sodium alginate (SA), carrageenan (CA) and metolose (MET) with polyethylene glycol (PEG 400) as plasticiser, OME (model drug) and L-arg (stabiliser). Gels (1% w/w) were prepared at 40°C using water and ethanol with PEG 400 (0–1% w/w) and dried in an oven (40°C). Optimised formulations containing OME and L-arg (1:1, 1:2 and 1:3) were prepared to investigate the stabilisation of the drug. Tensile properties (Texture analysis, TA), physical form (differential scanning calorimetry, DSC; X-ray diffraction, XRD; thermogravimetric analysis, TGA) and surface topography (scanning electron microscopy, SEM) were investigated. Based on the TA results, SA and MET films were chosen for OME loading and stabilisation studies as they showed a good balance between flexibility and toughness. Plasticised MET films were uniform and smooth whilst unplasticised films demonstrated rough lumpy surfaces. SA films prepared from aqueous gels showed some lumps on the surface, whereas SA films prepared from ethanolic gels were smooth and uniform. Drug-loaded gels showed that OME was unstable and therefore required addition of L-arg. The DSC and XRD suggested molecular dispersion of drug within the polymeric matrix. Plasticised (0.5% w/w PEG 400) MET films prepared from ethanolic (20% v/v) gels and containing OME: L-arg 1:2 showed the most ideal characteristics (transparency, ease of peeling and flexibility) and was selected for further investigation.

Authors and Affiliations

Sajjad Khan, Joshua S. Boateng, John Mitchell, Vivek Trivedi

Keywords

Related Articles

Preparation and Characterization of an Advanced Medical Device for Bone Regeneration

Tridimensional scaffolds can promote bone regeneration as a framework supporting the migration of cells from the surrounding tissue into the damaged tissue and as delivery systems for the controlled or prolonged release...

Bilayer Matrix Tablets for Prolonged Actions of Metformin Hydrochloride and Repaglinide

A combination therapy of metformin hydrochloride (MH) and repaglinide (RG) achieves a perfect glycemic control; however, the combination formulation of immediate release must be taken several times a day, compromising th...

A Gastrointestinal Transit Study on Amphotericin B-Loaded Solid Lipid Nanoparticles in Rats

The gastrointestinal (GI) transit behavior of and absorption from an amphotericin B (AmB) solid lipid nanoformulation (SLN) in rats was investigated. We aimed to estimate the gastric emptying time (GET) and cecal arrival...

Dendrimer, Liposomes, Carbon Nanotubes and PLGA Nanoparticles: One Platform Assessment of Drug Delivery Potential

Liposomes (LIP), nanoparticles (NP), dendrimers (DEN), and carbon nanotubes (CNTs), represent eminent classes of drug delivery devices. A study was carried out herewith by employing docetaxel (DTX) as model drug to asses...

Novel Simvastatin Inhalation Formulation and Characterisation

Simvastatin (SV), a drug of the statin class currently used orally as an anti-cholesterolemic via the inhibition of the 3-hydroxy-3-methyl-glutaryl-Coenzyme A (HMG-CoA) reductase, has been found not only to reduce choles...

Download PDF file
  • EP ID EP682247
  • DOI  10.1208/s12249-014-0268-7
  • Views 122
  • Downloads 0

How To Cite

Sajjad Khan, Joshua S. Boateng, John Mitchell, Vivek Trivedi (2015). Formulation, Characterisation and Stabilisation of Buccal Films for Paediatric Drug Delivery of Omeprazole. AAPS PharmSciTech, 16(4), -. https://www.europub.co.uk/articles/-A-682247