A methodology to develop a vascular geometry for in vitro cell culture using additive manufacturing
Journal Title: International Journal of Bioprinting - Year 2019, Vol 5, Issue 2
Abstract
Today, additive manufacturing (AM) is implemented in medical industry and profoundly revolutionizes this area. This approach consists of producing parts by additions of layers of successive materials and offers advantages in terms of rapidity, complexity of parts, competitive costs that can be exploited and can lead to a significant advancement in biological research. Everything becomes technically feasible and gives way to a “techno-centered” approach. Many parameters must be controlled in this field, so it is necessary to be guided for the development of such a product. This article aims to present a state of the art of existing design methodologies focused on AM to create medical devices. Finally, a development method is proposed that consists of producing vascular geometry using AM, based on patient data, designed for cell culture in vitro studies.
Authors and Affiliations
Laurène Lenoir1, Frédéric Segonds, Kim-Anh Nguyen, Pablo Bartolucci
Post-printing surface modification and functionalization of 3D-printed biomedical device
3D printing is a technology well-suited for biomedical applications due to its ability to create highly complex and arbitrary structures from personalized designs with a fast turnaround. However, due to a limited selecti...
Development and characterization of a photocurable alginate bioink for three-dimensional bioprinting
Alginate is a biocompatible material suitable for biomedical applications, which can be processed under mild conditions on irradiation. This paper investigates the preparation and the rheological behavior of different pr...
Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration
Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as...
Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells
The ability of skeletal muscle to self-repair after a traumatic injury, tumor ablation, or muscular disease is slow and limited, and the capacity of skeletal muscle to self-regenerate declines steeply with age. Tissue en...
Three-dimensional-printing for microfluidics or the other way around?
As microfluidic devices are designed to tackle more intricate tasks, the architecture of microfluidic devices becomes more complex, and more sophisticated fabrication techniques are in demand. Therefore, it is sensible t...