Creation of neuron network productivity of lucerne in Steppe zone of Ukraine

Journal Title: Agrology - Year 2019, Vol 2, Issue 1

Abstract

In arid conditions of the Steppe zone of Ukraine for obtaining stable yields of lucerne and observance the conditions of resource-saving, it is important to know from what factors the value of the yield of lucerne depends on. According to the results of the conducted research, an agroecological model of the productivity of growing crop on irrigated lands of the Ukrainian Steppe has been formed. For the carrying out research, the method of artificial neuron networks was used. Creating an agroecological model of lucerne production using neuron networks consists of the following phases: search of data; preparation and normalization of data; choice of type of neuron network; experimental choice of network characteristics; experimental choice of parameters; obtaining an artificial neuron network for modeling the productivity of lucerne; checking of adequacy of the model; adjustment of parameters, final training. As a result of the research it was found that artificial neuron networks are fundamentally different from traditional methods of statistical data analysis. In the capacity of main elements of the system are taken: the sum of effective temperatures above +5 °С; amount of atmospheric precipitation; solar lighting duration; irrigation norms; depth of soil tillage; fertilization and plant protection. The article presents a constructed neuron network with architectural parameters. It has been established that among the significant number of natural and agrotechnical factors affecting the productivity of crops of lucerne, the greatest influence is carried out by atmospheric precipitation and, in our case, water-saving irrigation norms. Among the investigated factors there are a high degree of pair and multiple correlations. It is proved that the components of architecture contain different compositions of multilayered perceptrons, radial-basic functions, and also linear components.

Authors and Affiliations

V. Y. Zaporozhchenko, A. V. Shepel

Keywords

Related Articles

Influence of agrotechnical methods on yield formation and quality of seeds of oil-bearing flax

In the field experiments, it was established that the increase of seeding rate significantly raised the density of plant stand per unit area under crops, which stepped up the competition for factors of life. A gradual de...

Фізико-хімічне та біологічне тестування фітомеліорованих гірничих порід покровського стаціонару рекультивації земель

З’ясовано властивості розкривних гірничих порід Покровського стаціонару рекультивації земель Нікопольського марганцеворудного родовища, а також два види техногенних субстратів. Проби відбирали з кожного типу технозему на...

Вплив органічних добрив на ріст й розвиток рослин гречки

Висвітлено результати чотирирічних досліджень з вивчення впливу органічних добрив, виготовлених методом біологічної ферментації та методом кавітації зі збалансованим умістом тривалентного хрому, на ріст й розвиток рослин...

Agroecological and legal support of monitoring especially valuable grounds within farmlands

Soil is a complicated organ and mineral composition in the upper layer of the lithosphere. In centuries-old synergistic zonal development it acquired a biosphere trait, which is the natural fertility. Intensive use of pe...

Content of anthocyans in sweet corn with different grain coloring

In connection with the unbalanced nutrition of people, the constant psychological and physical stress of humankind, the spread of diseases of different etymologies, the growing of agricultural crops with high anthocyan c...

Download PDF file
  • EP ID EP475642
  • DOI 10.32819/2617-6106.2018.14017
  • Views 145
  • Downloads 0

How To Cite

V. Y. Zaporozhchenko, A. V. Shepel (2019). Creation of neuron network productivity of lucerne in Steppe zone of Ukraine. Agrology, 2(1), 47-50. https://www.europub.co.uk/articles/-A-475642