Design and Construction of a High-voltage System to Kill Weeds with a Feedback Mechanism

Journal Title: Journal of Agricultural Machinery - Year 2023, Vol 13, Issue 2

Abstract

IntroductionVarious methods have been performed to control weeds in the world and the use of herbicides is one of them, but public concerns about human health have changed interest in alternative methods. Thermal methods based on flame-weeder, hot air, steam, and hot water have the potential to control weeds, but due to the high cost are not economical. Electromagnetic waves transfer energy into weeds and finally destroy them. The effect of radiation on plant mutation, high consumption of energy, and human health are problems for this approach. Unlike other methods, electrical energy is an ideal and non-chemical method for weeds. This method applies high voltage to weeds, their roots, and soil so that electric currents pass through them, and the vaporization of the liquid content of weeds kills the weeds. To increase the severity of damage to weeds, the development of a feedback mechanism is required. The ultrasonic sensor measuring physical parameters like plant height is a simple method. Some complex sensing systems include optical sensors such as infrared, and machine vision that require high-speed processors and expensive equipment. In this project, as a simple method, the monitoring of the electrical current passing through weeds was used for developing the feedback mechanism and increasing electric damage to weeds.Materials and MethodsIn this study, the system consisted of a high-voltage device that generated a 15 kV AC voltage to kill weeds, as well as a feedback mechanism that included a sensor to measure the electric current on the input of the weed killer and identify the presence of weeds and their annihilation. All parts were installed on a robotic platform, and an application on a laptop was connected to it via an access point for navigation and data reception. The system was tested in a greenhouse lab with various weeds. Initially, a test was performed to investigate the effect of high voltage on the weeds and establish relationships between the electric currents passing through weeds and their presence (before and after annihilation). During the test, the system was guided along a path and applied high voltage to kill the weeds. The feedback mechanism was then calibrated based on the extracted data on electric current relations. This allowed the system to detect weeds and their annihilation, enabling it to move to the next target once a weed had been eliminated. After calibration, a comparative test was conducted to evaluate the weed-killing efficiency of the two methods (with and without the feedback mechanism), and the results were analyzed using a t-test with p ≤ 0.01.Results and DiscussionThe observations indicated that the input electric current on the weed killer was dependent on the electric current passing through weeds. When the high-voltage electrode touched a weed, the electric current passed through it increased, and simultaneously, the high electrical energy destroyed the weed. After the removal of the weed, the electric current rapidly decreased. The average energy consumption per weed plant was estimated to be 250 joules, which can be compared with other methods. The final test comparing the use and non-use of the feedback mechanism revealed significant differences (P < 0.01) between the results obtained with and without the mechanism, demonstrating that the feedback mechanism increased the efficiency of weed annihilation. The sensing system used in the developed feedback mechanism is a simple method that is affected by the electrical resistivity of weeds. As such, it did not mistakenly detect other objects as weeds, unlike an ultrasonic mechanism. Based on these results, monitoring the electrical current passing through weeds proved to be a suitable method for developing a feedback mechanism for the weed killer to identify the presence of weeds and their annihilation.ConclusionThe use of high voltage as a non-chemical and alternative method for weed control has shown promising results. The study revealed that measuring the electric current applied to the weed killer was an effective and straightforward approach to developing a feedback mechanism. This mechanism aids in identifying the presence of weeds and ensuring their elimination by intensifying the damage inflicted on them through the application of high electrical energy. To further enhance the efficiency and speed of weed control, future research should consider integrating an automatic guidance mechanism with the weed killer.

Authors and Affiliations

B. Besharati,A. Jafari,H. Mousazadeh,H. Navid,

Keywords

Related Articles

Qualitative and Quantitative Features Evaluation of Two Methods of Sugarcane Harvesting (with aim of Energy and Sugar Production)

Introduction Sugarcane is an important plant in the world that cultivate for the production of sugar and energy. For this purpose, evaluation of Sugarcane (SC) and Energycane (EC) methods is necessary. Energy is vital fo...

Effect of poultry fat oil biodiesel on tractor engine performance

Introduction: Depletion of fossil fuels and environmental degradation are two major problems faced by the world. Today fossil fuels take up to 80% of the primary energy consumed in the world, of which 58% is consumed by...

Effect of Adding Sugarcane Bagasse and Filter Cake and Wetting and Drying Cycles on Pre-Compaction Stress of Soil

Introduction The compaction of soil by agricultural equipment has become a matter of increasing concern because compaction of arable lands may reduce crop growth and yield, and it also has environmental impacts. In natur...

The Effects of Drop Height, Conveyor Velocity and Contact Surface Material on Area and Volume Bruising of “Golden Delicious” Apple

Apple fruits are subjected to different loading from harvesting to supermarket shelf. Bruising has been attracted many researchers as one of the most important damage criteria. In this research, the effects of some facto...

Optimization the Spray-Drying Process of Moldavian Balm Plant Extract using Response Surface Methodology and TOPSIS Method

Introduction Dracocephalum moldavica L. is an annual plant with blue or white flowers and fragrant leaves which belongs to the family of Lamiaceae with the height of up to 80 cm. This plant is native to Central Asia and...

Download PDF file
  • EP ID EP718068
  • DOI https://doi.org/10.22067/jam.2021.70524.1051
  • Views 76
  • Downloads 0

How To Cite

B. Besharati, A. Jafari, H. Mousazadeh, H. Navid, (2023). Design and Construction of a High-voltage System to Kill Weeds with a Feedback Mechanism. Journal of Agricultural Machinery, 13(2), -. https://www.europub.co.uk/articles/-A-718068