Exposure to the electromagnetic field in the work space during the use of magnetotherapy or magnetostimulation devices. The method of in situ measurements of electromagnetic field – specific requirements
Journal Title: Podstawy i Metody Oceny Środowiska Pracy - Year 2016, Vol 32, Issue 4
Abstract
Labour law defines the obligation to identify and evaluate electromagnetic hazards in the vicinity of equipment and installations emit-ting an electromagnetic field (EM-field). Fol-lowing the regulation of ministry of labour which set the provisions regarding the safety and health in EM-field, the devices for mag-netotherapy have been mentioned among the typical sources of an EM-field (Regula-tion..., OJ 2016 item 950, Annex 1, item 10).Magnetotherapy devices are used to alleviate various diseases, using the influence of a quasi-static EM-field. The protective zones of the EM-field are present near the active ap-plicators during the treatment, so the condi-tions of exposure of personnel present nearby during the use of the applicators require a periodic inspection made according to the methods specified in the Polish Standards, and in the absence of such standards, by recommended and validated methods according to the provisions of regulation of ministry of health (Regulation... Journal of Laws 2011, item 166), in order to identify electromagnetic hazards and to take appropriate protective measures (Regulation... OJ 2016 item 950).The methods of measuring the EM-field to the extent necessary to meet these require-ments are currently not standardised; there-fore, the aim of the presented work was to develop a recommended method for measuring the parameters of the EM-field in-situ in the work space while using magnetotherapy or magnetostimulation devices.The recommended measurement method is based on detailed investigations on the char-acteristics of exposure to the EM-field sur-rounding typical magnetotherapy devices operated in Poland: by approx. 700 applica-tors of 500 devices (such as Magnetronic (series MF-10, MF-12, MF 20 and BTL), Magnetus (series 2 and 2.26), Magnoter (series D-56, D56A BL), Magner LT, Magner Plus, Magneris, MAG magnetic, Magnetic, Astar ABR).The oscilloscopic identification, the charac-teristics of variability in the time of the EM-field emitted by devices for magnetotherapy and magnetostimulation, and the measure-ments of the spatial distribution of the EM-field in the workspace by devices have been worked out.Based on the results of the study, it was shown that, during physiotherapy treatment, only the applicator for magnetotherapy or magnetostimulation is the source of the EM-field. When using an EM-field with a fre-quency of up to 100 Hz and a continuous sinusoidal or non-sinusoidal waveform – alternating or rectified (i.e. with a constant component) – the range of protective zones of EM-field is determined by the spatial dis-tribution of the quasi-static magnetic field (M-field). Because this type of device pre-dominates in Polish physiotherapy centres, to assess electromagnetic hazards in the work-space, it was recommended to use a simpli-fied method of measurement, involving the measurement of the root-mean-square (RMS) value of the M-field strength in sinusoidal operation mode and an evaluation of results, taking into account the limits reflecting the measures of exposure specified in the labour law in relation to the equivalent value of the M-field strength, but using an appropriate correction factor reflecting the need to strengthen the exposure evaluation at non-sinusoidal modes of operation (i.e. by the use of limits set for EM-field of 100 Hz frequen-cy). In the case of devices emitting an EM-field with frequencies in the kilohertz (kHz) range, or a device emitting a pulsed EM-field, it was recommended to use more complex meas-urements, including an individual analysis of the characteristics of the measured EM-field and a determination of correction factors to the interpretation of the measured RMS val-ue (based on the metrological characteristics of measuring devices used). The method also sets out principles for: locating the measure-ment points, determining the range of protec-tion zones and documenting the measure-ment results. The most important sources of uncertainty concerning EM-field measure-ments near magnetotherapy or magnetic stimulation applicators were also discussed.
Authors and Affiliations
Jolanta KARPOWICZ, Halina ANIOŁCZYK, Paweł , Krzysztof GRYZ, Jarosław KIELISZEK, Piotr POLITAŃSKI, Marek ZMYŚLONY, Patryk ZRADZIŃSKI
Akrylamid. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Akrylamid w temperaturze pokojowej występuje w postaci bezbarwnych kryształów lub płatków. Nie występuje w środowisku naturalnym, natomiast może się tworzyć w trakcie termicznej obróbki żywności (smażenie, pieczenie), wy...
Chromatograficzne oznaczanie tetrametylosukcynonitrylu w powietrzu na stanowiskach pracy
W wyniku badań opracowano czułą i selektywną metodę oznaczania tetrametylosukcynonitrylu w powietrzu na stanowiskach pracy z zastosowaniem chromatografii gazowej. Metoda polega na adsorpcji tetrametylosukcynonitrylu na ż...
Trimetyloamina. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Trimetyloamina (TMA) w temperaturze pokojowej jest gazem palnym o bardzo nieprzyjemnym zapachu zepsutych ryb. Próg zapachowy trimetyloaminy znajduje się w przedziale 0,5 ÷ 1,9 μg/m3. Substancja ta bardzo dobrze rozpuszcz...
Etopozyd – frakcja wdychalna. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Etopozyd w temperaturze pokojowej jest ciałem stałym występującym w postaci białego lub żółtobrązowego, krystalicznego proszku. Jest stosowany jako lek przeciwnowotworowy o działaniu cytotoksycznym i antymitotycznym w le...
Determining 3,7-dimethylocta-2,6-dienal in workplace air with HPLC
A new procedure has been developed for the assay of 3,7-dimethylocta-2,6-dienal (citral) with high-performance liquid chromatography with an diode array detector. This method is based on the adsorption of 3,7-dimethyl-2...