Fabric Defect Detection and Classifier via Multi-Scale Dictionary Learning and an Adaptive Differential Evolution Optimized Regularization Extreme Learning Machine

Journal Title: Fibres and Textiles in Eastern Europe - Year 2019, Vol 27, Issue 1

Abstract

To develop an automatic detection and classifier model for fabric defects, a novel detection and classifier technique based on multi-scale dictionary learning and the adaptive differential evolution algorithm optimised regularisation extreme learning machine (ADE-RELM) is proposed. Firstly in order to speed up dictionary updating under the condition of guaranteeing dictionary sparseness, k-means singular value decomposition (KSVD) dictionary learning is used. Then multi-scale KSVD dictionary learning is presented to extract texture features of textile images more accurately. Finally a unique ADE-RELM is designed to build a defect classifier model. In the training ADE-RELM classifier stage, a self-adaptive mutation operator is used to solve the parameter setting problem of the original differential evolution algorithm, then the adaptive differential evolution algorithm is utilised to calculate the optimal input weights and hidden bias of RELM. The method proposed is committed to detecting common defects like broken warp, broken weft, oil, and the declining warp of grey-level and pure colour fabrics. Experimental results show that compared with the traditional Gabor filter method, morphological operation and local binary pattern, the method proposed in this paper can locate defects precisely and achieve high detection efficiency.<br/><br/>

Authors and Affiliations

Zhiyu Zhou, Chao Wang, Xu Gao, Zefei Zhu, Xudong Hu, Xiao Zheng, Likai Jiang

Keywords

Related Articles

Empiryczne badanie społecznych inicjatyw małych i średnich przedsiębiorstw działających w przemyśle odzieżowym Indii&nbsp;

Małe i średnie przedsiębiorstwa zapoczątkowały inicjatywy odpowiedzialności społecznej dla poprawy ich konkurencyjności w handlu i eksporcie. Praca ma na celu rozpoznanie wpływu międzynarodowych norm na konkurencyjność o...

Study by Genetic Algorithm of the Role of Alfa Natural Fibre in Enhancing the Mechanical Properties of Composite Materials Based on Epoxy Matrix

Natural fibres have a very important role in improving the mechanical properties of composite materials. Our objective in this study was to use alfa natural fibre in a composite material based essentially on epoxy matrix...

Application of Spontaneous Oxidation Processes of Zero-valent Iron and Electrocoagulation for Reactive Black 5 Removal

Two methods of Reactive Black 5 dye removal were compared in this work, namely electrocoagulation (EC) and one based on spontaneous electrochemical oxidation of zero-valent iron (ZVI). Both methods are based on electrode...

Wpływ systemu uprawy i odchwaszczania na plon i jakość włókna lnianego

Len włóknisty mimo wielostronnych walorów użytkowych jest aktualnie uprawiany w Polsce na niewielkiej powierzchni. Wynika to z małej opłacalności jego produkcji. Omawiana praca wskazuje na możliwość obniżenia kosztów pro...

Static and Fatigue Strength of Linear Textile Products

This publication is a review of the work directed or inspired by the late Professor Andrzej Włochowicz in comparison to the current state of knowledge, and developed by his colleagues as an expression of memory and recog...

Download PDF file
  • EP ID EP413796
  • DOI 10.5604/01.3001.0012.7510
  • Views 99
  • Downloads 0

How To Cite

Zhiyu Zhou, Chao Wang, Xu Gao, Zefei Zhu, Xudong Hu, Xiao Zheng, Likai Jiang (2019). Fabric Defect Detection and Classifier via Multi-Scale Dictionary Learning and an Adaptive Differential Evolution Optimized Regularization Extreme Learning Machine. Fibres and Textiles in Eastern Europe, 27(1), 67-77. https://www.europub.co.uk/articles/-A-413796