Impacts of Bone Marrow Stem Cells on Caspase-3 Levels after Spinal Cord Injury in Mice
Journal Title: Iranian Journal of Medical Sciences - Year 2017, Vol 42, Issue 6
Abstract
Spinal cord injury (SCI) is a drastic disability that leads to spinal cord impairment. This study sought to determine the effects of bone marrow stem cells (BMSCs) on caspase-3 levels after acute SCI in mice. Forty-two mice were randomly divided into 3 groups: control (2 subcategories), subjected to no intervention; sham (3 subcategories), subjected to acute SCI; and experimental (2 subcategories), subjected to SCI and cell transplantation. In the experimental group, 2×105 BMSCs were injected intravenously 1 day after SCI. The mesenchymal property of the cells was assessed. The animals in the 3 groups were sacrificed 1, 21, and 35 days after the induction of injury and caspase-3 levels were evaluated using a caspase-3 assay kit. The obtained values were analyzed with ANOVA and Tukey tests using GraphPad and SPSS. Based on the assessments, the transplanted cells were spindle-shaped and were negative for the hematopoietic markers of CD34 and CD45 and positive for the expression of the mesenchymal marker of CD90 and osteogenic induction. The caspase-3 levels showed a significant increase in the sham and experimental groups in comparison to the control group. One day after SCI, the caspase-3 level was significantly higher in the sham group (1.157±0.117) than in the other groups (P<0.000). Twenty-one days after SCI, the caspase-3 level was significantly lower in the experimental group than in the sham group (0.4±0.095 vs. 0.793±0.076; P˂0.000). Thirty-five days following SCI, the caspase-3 level was lower in the experimental group than in the sham group (0.223±0.027 vs. 0.643±0.058; P˂0.000). We conclude that BMSC transplantation was able to downregulate the caspase-3 level after acute SCI, underscoring the role of caspase-3 as a marker for the assessment of treatment efficacy in acute SCI.
Authors and Affiliations
Noushin Gashmardi, Seyed Ebrahim Hosseini, Davood Mehrabani, Mohammad Amin Edalatmanesh, Zahra Khodabandeh
Hereditary Ataxia with a Novel Mutation in the Senataxin Gene: A Case Report
Hereditary ataxias (HA) are a group of inherited neurological disorders caused by changes in genes. At least 115 different mutations in the senataxin (SETX) gene causing ataxia have been identified. There are no reports...
A New Mutation Causing Severe Infantile-Onset Pompe Disease Responsive to Enzyme Replacement Therapy
Pompe disease (PD), also known as “glycogen storage disease type II (OMIM # 232300)” is a rare autosomal recessive disorder characterized by progressive glycogen accumulation in cellular lysosomes. It ultimately leads to...
Inhibition of the CatSper Channel and NOX5 Enzyme Activity Affects the Functions of the Progesterone-Stimulated Human Sperm
Background: Low levels of reactive oxygen species (ROS) and calcium are necessary for sperm function. NADPH oxidase 5 (NOX5) is a membrane enzyme which produces ROS. This enzyme is dependent on calcium for its activity....
Characterization of New Leprosy Cases in Northeast of Iran within the Last 15 Years
Leprosy is a neglected disease. The insidious onset of leprosy results in its late diagnosis and therefore the spread of the disease. Characterization of leprosy in areas with higher risk and collection of enough informa...
Effects of Two-by-Two Combination Therapy with Valproic Acid, Lithium Chloride, and Celecoxib on the Angiogenesis of the Chicken Chorioallantoic Membrane
Background: The synergistic effects of valproic acid (VPA), lithium (Li), and celecoxib (CX) have been shown in combination therapy against the proliferation and metastasis of numerous cancers. Angiogenesis plays a criti...