In-vitro Study of Photothermal Anticancer Activity of Carboxylated Multi-walled Carbon Nanotubes

Journal Title: Journal of Biomedical Physics and Engineering - Year 2017, Vol 7, Issue 4

Abstract

Background and Objective: Multi-walled Carbon Nano Tubes (MWCNTs) as an important element of nanosciences have a remarkable absorption in the region of NIR window (650-900 nm) which can overcome the limitations of deep treatment in photothermal therapy. To disperse MWCNTs in water, it is proposed to attach carboxylated functional group (-COOH) to MWCNTs in order to increase dispersivity in water. Methods: A stable suspension of MWCNTs-COOH with different concentrations (from 2.5 to 500 μg/ml) was prepared. Then, they were compared for their ability to increase temperature in the presence of 810 nm laser irradiation and through a wide range of radiation time (from 20 to 600 s) and three laser powers (1.5, 2 and 2.5 w). The temperature rise was recorded real time every 20 seconds by a precise thermometer. Results: Absorption spectrum of MWCNTs-COOH suspension was remarkably higher than water in a wavelength range of 200 to 1100 nm. For example, using the concentrations of 2.5 and 80 μg/ml of MWCNTs-COOH suspension caused a temperature elevation 2.35 and 9.23 times compared to water, respectively, upon 10 min laser irradiation and 2.5 w. Moreover, this predominance can be observed for 1.5 and 2 w radiation powers, too. Our findings show that the maximum of temperature increase was obtained at 80 μg/ml concentration of MWCNT-COOH suspension for three powers and through all periods of exposure time. Our results show that the minimum required parameters for a 5°C temperature increase (a 5°C temperature increase causes cell death) were achieved through 2.5 w, 28 μg/ml concentration and 20 second irradiation time in which both concentration and radiation times were relatively low. Conclusion: Our results showed that MWCNTs-COOH can be considered as a potent photothermal agent in targeted therapies. New strategies must be developed to minimize the concentration, irradiation time and radiation power used in experiments.

Authors and Affiliations

M H Bahreyni-Toosi, A Ale-Davood, M T Shakeri, S Soudmand

Keywords

Related Articles

A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images

Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact...

Evaluation of Electron Specific Absorbed Fractions in Organs of Digimouse Voxel Phantom Using Monte Carlo Simulation Code FLUKA

Background: For preclinical evaluations of radiopharmaceuticals, most studies are carried out on mice. Electron specific absorbed fractions (SAF) values have had vital role in the assessment of absorbed dose. In past stu...

Designing and Developing Automatic Trolley for Washing and Dressing the Wounds

Introduction: Many items are needed for dressing including sterile dressing set, antiseptic and washing solutions, leucoplast tape, waste bin for infectious garbage, waste bin for noninfectious garbage, safe disposal tra...

Monte Carlo Study of Unflattened Photon Beams Shaped by Multileaf Collimator

Introduction: This study investigates basic dosimetric properties of unflattened 6 MV photon beam shaped by multileaf collimator and compares them with those of flattened beams. Materials and Methods: Monte Carlo simulat...

Download PDF file
  • EP ID EP331929
  • DOI -
  • Views 110
  • Downloads 0

How To Cite

M H Bahreyni-Toosi, A Ale-Davood, M T Shakeri, S Soudmand (2017). In-vitro Study of Photothermal Anticancer Activity of Carboxylated Multi-walled Carbon Nanotubes. Journal of Biomedical Physics and Engineering, 7(4), 317-332. https://www.europub.co.uk/articles/-A-331929