Invariant means on Banach spaces
Journal Title: Annales Mathematicae Silesianae - Year 2017, Vol 31, Issue
Abstract
In this paper we study some generalization of invariant means on Banach spaces. We give some sufficient condition for the existence of the invariant mean and some examples where we have not it.
Authors and Affiliations
Radosław Łukasik
Inequalities of Lipschitz type for power series in Banach algebras
Let $f(z) = \sum_{n=0}^{\infty}\alpha_n z^n$ be a function defined by power series with complex coefficients and convergent on the open disk $D(0,R) \subset \mathbb{C}$, $R > 0$. For any $x, y \in \mathcal{B}$, a Banach...
An infinite natural product
We study a countably infinite iteration of the natural product between ordinals. We present an “effective” way to compute this countable natural product; in the non trivial cases the result depends only on the natural su...
Random dynamical systems with jumps and with a function type intensity
In paper [4] there are considered random dynamical systems with randomly chosen jumps acting on Polish spaces. The intensity of this process is a constant $\lambda$. In this paper we formulate criteria for the existence...
Properties and characterizations of convex functions on time scales
In this research we deal with algebraic properties and characterizations of convex functions in the context of a time scale; this notion of convexity has been studied for some other authors but the setting of properties...
On Popoviciu-Ionescu functional equation
We study a functional equation first proposed by T. Popoviciu [15] in 1955. It was solved for the easiest case by Ionescu [9] in 1956 and, for the general case, by Ghiorcoiasiu and Roscau [7] and Radó [17] in 1962. Our s...