МЕТОДИ І ЗАСОБИ ВИМІРЮВАННЯ ТА КОМП’ЮТЕРНОГО ОПРАЦЮВАННЯ БІОСИГНАЛІВ
Journal Title: Вимірювальна техніка та метрологія - Year 2018, Vol 79, Issue 3
Abstract
Information about the psychophysiological state of humans is important not only in medical practice for the diagnosis of possible diseases but is also for affective informatics, biometrics, rehabilitation engineering, human-machine interaction, etc. Currently biosignals measurement instrumentations are highly specialized and designed to process the separate types of biosignals (ECG, EEG), or to perform the specific tasks, for example, medical diagnosis or biometry. Methods aimed obtaining final top-level information are still "manual" since they rely heavily on the expert’s experience. Purpose of current work is to consider the ways of provision the flexibility and functionality of bioinformatic means on the basis of computing platforms, digital signal processing methods and machine-learning algorithms. Genesis of biosignals is analyzed. Classification of biosignals generation methods is proposed: – biosignals, the primary nature of which is electric (sensing using of electrodes, e.g. EEG); – biosignals that reflect non-electrical processes in the body (formed by sensors, e.g MCG); – biosignals, which are a response to external stimuli (e.g. BIA). Factors that complicate the processing of biosignals are described. Different generation ways and parameter variabilities become the appreciable barrier for the structure unification of the computer-measuring systems. Another barrier is related to the dissimilarity of the algorithms of determining biomedical data. There exist the drivers that offer opportunities in providing the flexibility and functionality of the bioinformatics system. Such an approach makes possible to distribute the structural elements of a computer-measuring system into three groups: – individual items (electrodes, sensors, actuators, measuring cascade, stimulus formatter); – specific group (signal conditioning, ADC and DAC); – universal group (digital processing unit; computer with software, including library of machine learning algorithms). At the final stage an interpretation of the results is carried out.
Authors and Affiliations
Yuriy Khoma, Bohdan Stadnyk, Mykola Mykyychuk, Semen Frish
ШУМОВІ МОДЕЛІ ВХІДНОГО КОЛА ШУМОВОГО ТЕРМОМЕТРА НА ОСНОВІ ДВОХКАНАЛЬНОГО ПІДСИЛЮВАЧА
An analysis and synthesis of possible variants of entrance chain of noise thermometer is conducted with the use of two channel strengthener. Noise models, describing dependence of output tensions of two channel strengthe...
ОСОБЛИВОСТІ ВИЗНАЧЕННЯ ТЕМПЕРАТУРИ ОБ’ЄКТІВ ЗА СПЕКТРАЛЬНОЮ ГУСТИНОЮ ПОТУЖНОСТІ ВЛАСНОГО ВИПРОМІНЮВАННЯ В ОПТИЧНОМУ ДІАПАЗОНІ
Specified mathematical model of wavelength peak of self-radiation objects within the optical range is proposed.
ДОСЛІДЖЕННЯ ВПЛИВУ ЄМНОСТІ ПОДВІЙНОГО ШАРУ НА ІНФОРМАТИВНІ ПАРАМЕТРИ ІМІТАНСНИХ СЕНСОРІВ
The influence of double layer capacitance on the active and reactive components of immitance as informative parameters of the primary transducer (sensor) means of measuring control of properties of non-electric nature o...
ПОРІВНЯЛЬНИЙ АНАЛІЗ МЕТОДІВ ВИЗНАЧЕННЯ ШВИДКОСТІ ЗВУКУ
The paper presents the results of a comparative analysis of methods for calculating the speed of sound in natural gas according to the field of application, the structure of the algorithm and the methodical error. The an...
ПРОГНОЗУВАННЯ ТЕМПЕРАТУРИ ПОТОКів ВОДИ ТА ПОВІТРЯ ІЗ ВИКОРИСТАННЯМ НЕЙРОННої МЕРЕЖІ
Current article considers the results of the study of air and water flow temperature prediction error on the number of inputs in neural network. Authors guide the architecture of neural network for temperatu...