MODEL FOR UNSTEADY OF DIFFUSION –ADVECTION OF RADON IN SOIL – ATMOSPHERE

Abstract

We consider a mathematical model for unsteady transport of radon from the constant coefficients in the soil – atmosphere. An explicit analytical solution for this model and built at different times of his profiles.

Authors and Affiliations

Roman Parovik

Keywords

Related Articles

СПЕКТРАЛЬНЫЕ ЗАДАЧИ ДЛЯ ТРЕХМЕРНЫХ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С СИНГУЛЯРНЫМИ КОЭФФИЦИЕНТАМИ

Найдены собственные значения и собственные функции двух краевых задач для трехмерных уравнений эллиптического типа с сингулярными коэффициентами при младших членах.

TO THE QUESTION OF SOLVABILITY OF ORDINARY DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

We discussed the problem of solvability of initial value problem for one model ordinary differential equation of fractional order. It is shown that the dimension of the kernel depends on the distribution parameters of Dz...

PHASE ANALYSIS OF TIME SERIES OF GEOPHYSICAL FIELDS

In this paper we consider one of the stages predprognoznogo time series analysis, based on the decomposition of the phase portrait on the example quasicycle time-series radon.

ON THE COMPUTING OF THE EQUILIBRIUM VOLUME OF A SMALL SESSILE DROP

In the current paper we consider a small liquid drop resting on a horizontal smooth surface with the effect of gravity and wich is in thermodynamic equilibrium with its own vapor. Taking into account the size dependence...

A NONLOCAL BOUNDARY VALUE PROBLEM FOR A MIXED-TYPE EQUATION IN AN UNBOUNDED DOMAIN, WHICH IS PART OF AN ELLIPTIC RECTANGLE

In an article for mixed-type equation in an unbounded domain elliptic part is a rectangle, the unique solvability of a nonlocal boundary value problem. The uniqueness of the solution is proved by energy integrals, and th...

Download PDF file
  • EP ID EP465664
  • DOI 10.18454/2079-6641-2010-1-1-39-45
  • Views 146
  • Downloads 0

How To Cite

Roman Parovik (2010). MODEL FOR UNSTEADY OF DIFFUSION –ADVECTION OF RADON IN SOIL – ATMOSPHERE. Вестник КРАУНЦ. Физико-математические науки, 1(), 39-45. https://www.europub.co.uk/articles/-A-465664