Моделювання близького порядку аморфних оксидів Zr1-xYxO2
Journal Title: Математичне моделювання - Year 2018, Vol 1, Issue 2
Abstract
MODELLING OF SHOT-RANGE ORDER OF AMORPHOUS OXIDES OF Zr1-xYxO2 Baskevich A.S., Vereshchak V.G., Nikolenko M.V. Abstract The use of stabilized zirconia dioxides as high-strength materials for structural materials, bioceramics and as solid electrolyte for “Fuel Cells” is an extremely promising area for the development of new materials with unique properties. Obtaining powdered nanodispersed powders of stabilized zirconia at a given chemical and phase composition, the size of the primary particles and their distribution in size is a very complicated process. For their successful obtaining it is necessary to systematically study the physico-chemical processes of the formation of solid phase stabilized zirconium dioxide throughout the path of transformation "solution → a precipitate of zirconium hydroxide → amorphous zirconium dioxide → crystalline zirconium dioxide" and develop on the basis of effective control factors of the process of forming the micro- and macrostructure of stabilized powders zirconia dioxide. In order to find out the processes of formation of a nanocrystalline structure of Zr1-xYxO2 powders (x = 6,8,10 %) when obtained from solutions, data on the short-range order arrangement of atoms in amorphous zirconia, which is the main prestructure in its transition in nanocrystalline and crystalline states. The short-range order arrangement of atoms in the amorphous oxide Zr1-xYxO2 was investigated by the method of joint simulation of the main structural factor maximal profile and the approximation of the atom radial distribution function (ARDF) based on experimental data of wide-angle X-ray scattering. In the framework of the proposed shot–range order model for the amorphous Zr1-xYxO2 oxide, the form of regions of the ordered arrangement of atoms (ROAA) was selected based on the Brave principle, which indicates that the crystal faces with the highest reticular density of atoms have minimal surface energy and interplane spacings with small indices. These forms include dense packings of elemental polyhedron of two types: octahedron and tetrahedron. The simulated shot-range order simulation of amorphous oxides Zr1-xYxO2 showed that ROAA has the form close to the octahedron, and ROAA sizes have an average value of 5 nm, and the type of packaging is cubic with an average coordination number of 11—14. Comparison of the results of theoretical modeling with the results of high resolution electron microscopy showed good coincidence, and it was also established that the formation of nanosized Zr1-xYxO2 oxide particles occurs from an amorphous matrix, by streamlining the atomic structure. The proposed simulation method by means of the combined use of ARDF and the approximation of the profile of the main peak of the structural factor makes it possible to determine the close order of amorphous substances of different composition in the absence of high-resolution electron microscopy. References [1] Pul Ch., F. Ouence. Mir materialov i tekhnologii. Nanotekhnologii [Material Wolrd. Nanotechnology]. M.: Tekhnosfera, 2006, 336 p. (in Russian). [2] Suzdalev I.P. Nanotekhnologiia. Fiziko-khimiia nanostruktury i nanomaterialov [Nanotechnology. Physicochemistry of nanostructure and nanomaterials]. M.:Kom.Kniga, 2006, 592 p. (in Russian). [3] Shabanov N.A., Popov V.V., Sarkisov P.D. Khimiia i tekhologiia nanodispersnykh oksidov [The chemistry and Technology of nanodispersed oxides]. M.: IKTZ “Akademkniga”, 2007, 300 p. (in Russian). [4] Skorokhod V.V. Teoriia fizicheskikh svoistv [The theory of physical properties]. Poroshkovaia metallurgiia, 1995, no.1/2, pp.53-71 (in Russian). [5] Maier K. Fiziko–khimicheskaia kristallografiia [The physical-chemical crystallography]. M.:Metallurgiia, 1972, 480 p. (in Russian). [6] Rao Ch. N. R., Galakrimnan Dzh. Novyie napravleniia v khimii tverdogo tela (struktura, sintez, svoistva, reaktzionnaia sposobnost i dizain materialov) [New diretion in the chemistry of solsds. Structure, synthesis, properties and desing of materials]. Novosibirsk.: Nauka, 1990, 520 p. (in Russian). [7] Lange F.F. Powder processing science and technology for increased reliability, Journal of The American Ceramical Societe, 1989, vol. 72, no. 1, pp.3–15. [8] Piconi C., Maccauro G. Zirconia as ceramic biomaterial, Biomaterials, 1999, no. 20, pp.1–25. [9] Shevchenko A.V., Dudnik Ye. V., Dudnik V.A. i dr. Bioinertnyie implanty na ocnovie nanokristallicheskikh poroshkov ZrО2 [Bioinert implants based on crystalline ZrO2 powders]. Теkhnika mashinostroieniia, 2006, vol. 58, no. 2, pp. 32–35 (in Russian). [10] Baskevich A.S., Gulivetz A.N., Zabludovsky V.O. Modeling of short-range structure in Ni-P alloys. Ukrainian Journal of Physics, 2004, vol.49, no. 12, pp.1196-1199. [11] Baskevich A.S., Gulivetz A.N., Zabludovsky V.A. Blizhnii poriadok rentgenoamorfnykh splavov Ni-P i Co-P, poluchennykh impulsnym elekroosazhdeniiem [Shot-range order amorphous Ni-P and Co-P alloys, obtained by pulse electrodeposition]. Меtallofizika i noveishyie tekhnologii, 2004, vol. 26, no. 9, pp.11511161. [12] Baskevich A., Soboliev V. Study of short range ordering of amorphous Cr-C alloys obtained by pulse electrodeposition. Journal "Scientific Israel Technological Advantages", 2011, vol. 13, no. 4, pp.103110. [13] Nadezhdin Yu. L., Baskevich O.S., Vereshchak V.G., Shan O.O. “Metodyka vyznachennia rozmiriv klasteriv nanokrystalichnykh poroshkiv dioksydiv zyrkoniiu za analizom profiliu golovnogo piku strukturnogo faktoru” [Method of the size of clusters of nanocrystalline powders of zirconium dioxides by analysis of the profile of the main peak of structural factor]. Tezisy dokadov. 74 Mezhdunarodnoi nauchno–prakticheskoi Konferentzii “Problemy i perspektivy razvitiia zheleznodorozhnogo transporta” [Thesis of the 74th Int. Sci. and pract. Conf. “Problems and Prospect for the development of Railway”]. Dnepropetrovsk, 2014, pp.415–417. (in Ukrainian).
Authors and Affiliations
О. С. Баскевич, В. Г. Верещак, М. В. Ніколенко
Тheoretical foundations of expansion of the numerical space
ТЕОРЕТИЧНІ ОСНОВИ РОЗШИРЕННЯ ЧИСЛОВОГО ПРОСТОРУ Романюк О.Д., Романюк Р.О. Реферат Логічний аналіз історії розвитку теорії чисел і особливо векторної алгебри, наштовхував на ідею введення «тримірних» чисел, над якими...
Система термодинамических соотношений для описания процессов взаимодействия расплавов в горне доменной печи на основе параметров межатомного взаимодействия
The system of thermodynamic parities in the form of criteria and models for an estimation of results of interaction melts in a forge of a blast furnace on the basis of parametres of internuclear interaction for the purpo...
Математическая модель срока службы роторных питателей транспортно-загрузочной системы
A mathematical model of working rotating conical surface tribosystem after wear. The parameters influencing the formation of the relief of the rotor wear. The mathematical models to determine the characteristics curves o...
Вибір махових мас ланок передаточних механізмів на основі оптимізації передаточної функції
On the basis of a mathematical model of the transmission mechanism were obtained dependences which allowed calculating during design phase the corresponding mass of gearwheels that can play the role of flywheel masses of...
Оптимальний розподіл ресурсів в багатопроцесорних систе-мах
OPTIMAL RESOURCES ALLOCATION IN MULTIPROCESSORS SYSTEMS Kosolap A.I., Volynets N.S. Abstract The efficiency of a multiprocessor system depends on the optimal allocation of tasks to the computing nodes. The problem of d...