Numerical and Experimental Investigation of Hail Impact-Induced Dent Depth on Steel Sheets
Journal Title: Journal of Civil and Hydraulic Engineering - Year 2025, Vol 3, Issue 1
Abstract
The impact of artificial hailstones on G300 steel sheets with varying thicknesses has been systematically investigated to evaluate the resulting dent depths. Two distinct methods for producing simulated hailstones were employed: one utilizing polyvinyl alcohol (PVA) adhesive and the other incorporating liquid nitrogen. Comparative analyses of these techniques revealed that the liquid nitrogen method, in conjunction with demineralized water, yielded more accurate results than the PVA adhesive-based method. Experimental findings were cross-referenced with theoretical predictions and finite element simulations, with model accuracy being validated against existing research in the field. The study focused on three hailstone diameters—38mm, 45mm, and 50mm—across various sheet thicknesses. Results indicate that dent depth is primarily influenced by the impact energy, sheet metal thickness, and hailstone diameter. Notably, the momentum of the hailstone plays a critical role, with smaller, higher-momentum hailstones inducing permanent deformations comparable to those of larger, lower-momentum hailstones, even when the impact energies are equivalent. The findings suggest that variations in hailstone momentum can lead to similar deformation patterns across different sizes, emphasizing the importance of momentum in the design of steel sheet materials for enhanced hailstone impact resistance. This study contributes valuable insights for the development of more resilient materials in industries subject to dynamic impact loading, such as automotive and aerospace engineering.
Authors and Affiliations
Meryem Dilara Kop, Mehmet Eren Uz, Yuze Nian, Mehmet Avcar
Research and Experimentation on the Orthogonal Error Correction Method for Horizontal Displacement Monitoring
Dam deformation monitoring is a critical technical measure to ensure the safe and stable operation of dams. It involves measuring the structural deformation response of engineering dams using monitoring instruments or te...
Safety Monitoring Technologies for the Water Resources Allocation Project in the Pearl River Delta: Challenges and Innovations
The Pearl River Delta Water Resources Allocation Project is characterized by an extensive distribution of buildings along a lengthy alignment and the application of diverse construction methodologies. Given these complex...
Bibliometric and Scientometric Trends in Structural Health Monitoring Using Fiber-Optic Sensors: A Comprehensive Review
The construction, maintenance, and repair of civil infrastructure demand substantial economic investment, underscoring the necessity of structural health monitoring (SHM) to mitigate property loss resulting from structur...
Impact of Meteorological Factors on Asphalt Pavement Surface Temperatures: A Machine Learning Approach
Recent observations of global warming phenomena have necessitated the evaluation of the service performance of asphalt pavements, which is substantially influenced by surface temperature levels. This study employed twelv...
Designing Induced Joints in RCC Arch Dams for Enhanced Crack Prevention: A Contact Unit Simulation and Equivalent Strength Theory Approach
Decades of engineering practice have substantiated that the implementation of construction joints is a pivotal method for mitigating dam cracking. The integration of various joint types, notably transverse and induced jo...