Particle size analysis of concentrated phospholipid microemulsions: II. Photon correlation spectroscopy

Journal Title: The AAPS Journal - Year 2000, Vol 2, Issue 3

Abstract

The solvated droplet size of concentrated water-in-oil (w/o) microemulsions prepared frome egg and soy lecithin/water/isopropyl myristate and containing short-chain alcohol cosurfactants has been determined using photon correlation spectroscopy (PCS). The effect of increasing the water volume fraction (from 0.04 to 0.26) on the solvated size of the w/o droplets at 298 K has been investigated at 4 different surfactant/cosurfactant weight ratios (Km of 1∶1, 1.5∶1, 1.77∶1, and 1.94∶1); in all cases the total surfactant/cosurfactant concentration was kept constant at 25% w/w. In the case of the microemulsions prepared from egg lecthin, the diffusion coefficients obtained from PCS measurements were corrected for interparticulate interactions using a hard-sphere model that necessitated estimation of the droplet volume fractions, which in the present study were obtained from earlier total intensity light-scattering (TILS) studies performed on the same systems. Once corrected for hard-sphere interactions, the diffusion coefficients were converted to solvated radii using the Stokes-Einstein equation assuming spherical microemulsion droplets. For both egg and soy lecithin systems, no microemulsion droplets were detected at water concentrations less than 9 wt% regardless of the alcohol and Km used, suggesting that at low concentrations of added water, cosolvent systems were formed. At higher water concentrations, however, microemulsion droplets were observed. The changes in droplet size followed the expected trend in that for a fixed Km the size of the microemulsion droplets increased with increasing volume fraction of water. At constant water concentration, droplet size decreased slightly upon increasing Km. Interestingly, only small differences in size were seen upon changing the type of alcohol used. The application of the hard-sphere model to account for interparticulate interactions for the egg lecithin systems indicated that the uncorrected diffusion coefficients underestimated particle size by a factor of slightly less than 2. Reassuringly, the corrected droplet sizes agreed very well with those obtained from our earlier TILS study.

Authors and Affiliations

Reza Aboofazeli, David J. Barlow, M. Jayne Lawrence

Keywords

Related Articles

Equivalence studies for complex active ingredients and dosage forms

This article examines the United States Pharmacopeia (USP) and its role in assessing the equivalence and inequivalence of biological and biotechnological drug substances and products—a role USP has played since i...

Aerosol delivery of muramyl dipeptide to rodent lungs

Tuberculosis is the single most serious infectious disease worldwide. The respiratory tract is the primary site of infection by Mycobacterium tuberculosis (MTB). A number of immunogenic components of the cell wall of MTB...

Ligand Binding Assays in the 21st Century Laboratory: Automation

Many manufacturers offer well-designed instrument-specific authentication built into the automated system software. Instrument-specific security often contains thorough system tracking and audit trail generation for ensu...

Download PDF file
  • EP ID EP682092
  • DOI  10.1208/ps020319
  • Views 93
  • Downloads 0

How To Cite

Reza Aboofazeli, David J. Barlow, M. Jayne Lawrence (2000). Particle size analysis of concentrated phospholipid microemulsions: II. Photon correlation spectroscopy. The AAPS Journal, 2(3), -. https://www.europub.co.uk/articles/-A-682092