Performance Evaluation of Different Feature Extractors and Classifiers for Recognition of Human Faces with Low Resolution Images

Abstract

Face recognition is an effective biometric identification technique used in many applications such as law enforcement, document validation and video surveillance. In this paper the effect of low resolution images which are captured in real world applications, on the performance of different feature extraction techniques combined with a variety of classification approaches is evaluated. Gabor features and its combination with local phase quantization histogram (GLPQH) are dimensionality reduced by principal component analysis (PCA), linear discriminant analysis (LDA), locally sensitive discriminant analysis (LSDA) and neighbourhood preserving embedding (NPE) to extract discriminant image characteristics and the class label is attributed using the extreme learning machine (ELM), sparse classifier (SC), fuzzy nearest neighbour (FNN) or regularized discriminant classifier (RDC). ORL and AR databases are utilized and the results show that ELM and RDC have better performance and stability against resolution reduction, especially on Gabor-PCA and Gabor-LDA techniques. Among the interpolation approaches that we employed to enhance the image resolution, nearest neighbour outperforms other methods.

Authors and Affiliations

Soodeh Nikan*| ECE, University of Windsor, Windsor, ON – N9B 3P4, Canada, Majid Ahmadi| ECE, University of Windsor, Windsor, ON – N9B 3P4, Canada

Keywords

Related Articles

Classification of Different Wheat Varieties by Using Data Mining Algorithms

There are various applications using computer-aided quality controlling system. In this study, seed data set acquired from UCI machine learning database was used. The purpose of the study is to perform the operations for...

A fuzzy approach for determination of prostate cancer

Goal of this study is a design of a fuzzy expert system, its application aspects in the medicine area and its introduction for calculation of numeric value of prostate cancer risk. For this aim it was used prostate speci...

Epileptic State Detection: Pre-ictal, Inter-ictal, Ictal

Epileptic seizure detection and prediction from electroencephalography (EEG) is a vital area of research. In this study, Second-Order Difference Plot (SODP) is used to extract features based on consecutive difference of...

A simple Mathematical Fuzzy Model of Brain Emotional Learning to Predict Kp Geomagnetic Index

In this paper, we propose fuzzy mathematical model of brain limbic system (LS) which is responsible for emotional stimuli. Here the proposed model is utilized to predict the chaotic activity of the earth’s magnetosphere....

Process modelling and simulation of a Simple Water Treatment Plant

Water treatment plants are likely to experience problems such as the water level both in the filter cells and in the tanks tend to fluctuate widely. These create the potential for partial drainage, overflow, and potentia...

Download PDF file
  • EP ID EP773
  • DOI 10.18201/ijisae.28949
  • Views 471
  • Downloads 22

How To Cite

Soodeh Nikan*, Majid Ahmadi (2015). Performance Evaluation of Different Feature Extractors and Classifiers for Recognition of Human Faces with Low Resolution Images. International Journal of Intelligent Systems and Applications in Engineering, 3(2), 72-77. https://www.europub.co.uk/articles/-A-773