Smart hydrogels for 3D bioprinting

Journal Title: International Journal of Bioprinting - Year 2015, Vol 1, Issue 1

Abstract

Hydrogels are 3D networks that have a high water content. They have been widely used as cell carriers and scaffolds in tissue engineering due to their structural similarities to the natural extracellular matrix. Among these, “Smart” hydrogels refer to a group of hydrogels that is responsive to various external stimuli such as pH, temperature, light, electric, and magnetic field. Combining the potential of 3D printing and smart hydrogels is an exciting new paradigm in the fabrication of a functional 3D tissue. In this article, we provide a state-of-the-art review on smart hydrogels and bioprinting. We identify the critical material properties needed for the most commonly used bioprinting techniques, namely extrusion-based, inkjet-based, and laser-based techniques. The latest progress in different smart hydrogel systems and their applications in bioprinting are presented. The challenges of printing these hydrogel systems are also highlighted. Lastly, we present the potentials and the future perspectives of smart hydrogels in 3D bioprinting.

Authors and Affiliations

Shuai Wang, Jia Min Lee, Wai Yee Yeong

Keywords

Related Articles

Preparation and printability of ultrashort self-assembling peptide nanoparticles

Nanoparticles (NPs) have left their mark on the field of bioengineering. Fabricated from metallic, magnetic, and metal oxide materials, their applications include drug delivery, bioimaging, and cell labeling. However, as...

The mussel-inspired assisted apatite mineralized on PolyJet material for artificial bone scaffold

With the development of three-dimensional (3D) printing, many commercial 3D printing materials have been applied in the fields of biomedicine and medical. MED610 is a clear, biocompatible PolyJet material that is medical...

3D bioprinting technology for regenerative medicine application

Alternative strategies that overcome existing organ transplantation methods are of increasing importance because of ongoing demands and lack of adequate organ donors. Recent improvements in tissue engineering techniques...

Directed self-assembly software for single cell deposition

Laser direct-write (LDW) bioprinting methods offer a diverse set of tools to design experiments, fabricate tissue constructs and to cellular microenvironments all in a CAD/CAM manner. To date, we have just scratched the...

Revealing emerging science and technology research for dentistry applications of 3D bioprinting

Science and technology (S&T) on three-dimensional (3D) bioprinting is growing at an increasingly accelerated pace; one major challenge represents how to develop new solutions for frequent oral diseases such as periodonta...

Download PDF file
  • EP ID EP678629
  • DOI -
  • Views 203
  • Downloads 0

How To Cite

Shuai Wang, Jia Min Lee, Wai Yee Yeong (2015). Smart hydrogels for 3D bioprinting. International Journal of Bioprinting, 1(1), -. https://www.europub.co.uk/articles/-A-678629