Structural and Thermal Analysis of Different Piston Materials with Cooling (Due to Combustion Pressure) Using Finite Element Analysis

Abstract

In this research, we will be taking three different types of IC engines piston namely flat, bowled and shallow. These pistons will be made up of three different types of materials Alloy steel-1040, aluminium alloy-6061 and cast iron. Structural analysis will be carried out on all these three designs made up of these different materials to see if they can take the gas load on simulation software ANSYS. After that, thermal simulation of the piston will be done with cooling to see that feasibility of the piston to conduct necessary amount of heat on simulation software ANSYS. Then we will compare the result of structural and thermal analysis and decide the best design and also optimize the final design. By having cooling mechanisms simulated, temperatures were brought down to very low value in most of the regions .Now that most of the regions in the piston are in controlled temperatures. Therefore it is necessary to have dedicated cooling mechanisms for piston without which material melting may not be a surprise. It is also interesting to note that more heat is always concentrated at the center of the piston. This is so in all piston geometries. This is because of the fact that heat accumulated at the centre need to travel a long distance to dissipate the heat. Here is the summary of material temperatures for the different analysis that were carried out. Analysis carried out was basically a peak moment simulation, in which conditions prevailing at the point of combustion were simulated. Structural load is gas pressure and thermal load is heat energy released by the burning fuel and convection water and oil cooling. The peak surface temperature of the piston material when there is no cooling is about 1980oC against 518 oC when cooling was provided.

Authors and Affiliations

Puran Singh*| Research Scholar, FET, Mechanical Engineering Department, MRIU, Faridabad, India, Deb Ashis Parmanik| Supervisor, FET, Mechanical Engineering Department, MRIU, Faridabad India

Keywords

Related Articles

Drag Coefficient Determination of a Bus Model Using Reynolds Number Independence

Full-scale wind tunnel tests require too much time and cost to determine drag coefficients of vehicles. In this study, drag coefficient of a blunt bus model was tried to be determined using Reynolds number independence....

Investigation of the Effect of Using Biodiesel Diesel Engine Fuel System Injectors

In this study, currently used as a fuel in diesel engines instead of diesel fuel, biodiesel from renewable energy sources is used, the mass loss due to wear of diesel engines, injectors, injector opening pressure of diam...

Structural and Thermal Analysis of Different Piston Materials with Cooling (Due to Combustion Pressure) Using Finite Element Analysis

In this research, we will be taking three different types of IC engines piston namely flat, bowled and shallow. These pistons will be made up of three different types of materials Alloy steel-1040, aluminium alloy-6061 a...

POTENTIAL OF A MEDIUM GRADE LOW HEAT REJECTION DIESEL ENGINE WITH CRUDE JATROPHA OIL

Investigations were carried out to evaluate the performance of a medium grade LHR diesel engine consisting of air gap insulated piston with 3-mm air gap, with superni (an alloy of nickel) crown and air gap insulated line...

The Numerical Investigation of Aerodynamic Structures of Truck and Trailer Combinations

In this study, aerodynamic structures of the heavy vehicle consisting of truck and trailer was investigated with computational fluid mechanics method. The force measurement were performed on the model car and aerodynamic...

Download PDF file
  • EP ID EP3959
  • DOI -
  • Views 406
  • Downloads 21

How To Cite

Puran Singh*, Deb Ashis Parmanik (2015). Structural and Thermal Analysis of Different Piston Materials with Cooling (Due to Combustion Pressure) Using Finite Element Analysis. International Journal of Automotive Engineering and Technologies, 4(2), 110-117. https://www.europub.co.uk/articles/-A-3959