The Classification of Diseased Trees by Using kNN and MLP Classification Models According to the Satellite Imagery

Abstract

In this study, the Japanese Oak and Pine Wilt in forested areas of Japan was classified into two group as diseased trees and all other land cover area according to the 6 attributes in the spectral data set of the forest. The Wilt Data Set which was obtained from UCI machine learning repository database was used. Weka (Waikato Environment for Knowledge Analysis) software was used for classification of areas in the forests. The classification success rates and error values were calculated and presented for classification data mining algorithms just as Multilayer Perceptron (MLP) and k-Nearest Neighbor (kNN). In MLP neural networks the classification performance for various numbers of neurons in the hidden layer was presented. The highest success rate was obtained as 86.4% when the number of neurons in the hidden layer was 10. The classification performance of kNN method was calculated for various counts of neighborhood. The highest success rate was obtained as 72% when the count of neighborhood number was 2.

Authors and Affiliations

Muhammed Fahri Unlersen *| Selcuk University Doğanhisar Vocational School Konya Turkey, Kadir Sabanci| Karamanoglu Mehmetbey University Electrical and Electronics Engineering Engineering Department Karaman Turkey

Keywords

Related Articles

Cloud Computing Environments Which Can Be Used in Health Education

At the present time, it is known that cloud computing technologies began to be used widely in information technology. The purpose of this study is to provide information about cloud technologies that can be used in healt...

BAT algorithm for Cryptanalysis of Feistel cryptosystems

Recent cryptosystems constitute an effective task for cryptanalysis algorithms due to their internal structure based on nonlinearity. This problem can be formulated as NP-Hard. It has long been subject to various attacks...

Store Data from Experiments with Microorganisms Used in Food Industry

The aim of this paper is to present results from collaboration of computer engineers and experimenters in microbiology working with molecular-genetic methods. The experimenters in microbiological laboratory at the Univer...

Adaptive Control Solution for a Class of MIMO Uncertain Underactuated Systems with Saturating Inputs

This paper addresses the issue of controller design for a class of multi-input multi-output (MIMO) uncertain underactuated systems with saturating inputs. A systematic controller framework, composed of a hierarchically g...

Grade prediction improved by regular and maximal association rules

In this paper we propose a method of predicting student scholar performance using the power of regular and maximal association rules. Due to the large number of generated rules, traditional data mining algorithms can bec...

Download PDF file
  • EP ID EP794
  • DOI 10.18201/ijisae.05552
  • Views 448
  • Downloads 23

How To Cite

Muhammed Fahri Unlersen *, Kadir Sabanci (2016). The Classification of Diseased Trees by Using kNN and MLP Classification Models According to the Satellite Imagery. International Journal of Intelligent Systems and Applications in Engineering, 4(2), 25-28. https://www.europub.co.uk/articles/-A-794