The Tauberian theorems for the slowly variating with residual functions and their applications

Journal Title: Проблемы анализа-Issues of Analysis - Year 2012, Vol 1, Issue 1

Abstract

В статье доказываются две тауберовых теоремы для преобразования Лапласа медленно меняющихся с остатком функций и рассматриваются их приложения к суммам значений неотрицательных мультипликативных функций, связанных с проблемой Вирзинга, поставленной им в 1967 г. в работе [1].

Authors and Affiliations

B. M. Shirokov

Keywords

Related Articles

DISCRETE LEAST SQUARES APPROXIMATION OF PIECEWISE-LINEAR FUNCTIONS BY TRIGONOMETRIC POLYNOMIALS

Let N be a natural number greater than 1. Select N uniformly distributed points t_k = 2πk/N (0 ≤ k ≤ N − 1) on [0, 2π]. Denote by L_{n,N} (f) = L_{n,N} (f, x) (1 ≤ n ≤ N/2) the trigonometric polynomial of order n possess...

The solution of a mixed boundary value problem for the Laplace equation in a multiply connected domain

Here we apply the Cauchy integral method for the Laplace equation in multiply connected domains when the data on each boundary component has the form of the Dirichlet condition or the form of the Neumann condition. This...

ПРЕОБРАЗОВАНИЕ ФУРЬЕ ФУНКЦИЙ УДОВЛЕТВОРЯЮЩИХ УСЛОВИЮ ЛИПШИЦА, НА ПЛОСКОСТИ ЛОБАЧЕВСКОГО

We prove the non-Euclidean analogue of the theorem of E. Titchmarsh about the description of image under Fourier transform of functions satisfying certain Lipschitz conditions.

A Note on Characterization of h-Convex Functions via Hermite-Hadamard Type Inequality

A characterization of h-convex function via Hermite-Hadamard inequality related to the h-convex functions is investigated. In fact it is determined that under what conditions a function is h-convex, if it satisfies the...

EXTENSION OF THE REFINED GIBBS INEQUALITY

In this note, we give an extension of the refined Gibbs' inequality containing arithmetic and geometric means. As an application, we obtain converse and refinement of the arithmetic-geometric mean inequality.

Download PDF file
  • EP ID EP234573
  • DOI 10.15393/j3.art.2012.1723
  • Views 100
  • Downloads 0

How To Cite

B. M. Shirokov (2012). The Tauberian theorems for the slowly variating with residual functions and their applications. Проблемы анализа-Issues of Analysis, 1(1), 32-39. https://www.europub.co.uk/articles/-A-234573