Whey Protein/Polysaccharide-Stabilized Emulsions: Effect of Polymer Type and pH on Release and Topical Delivery of Salicylic Acid

Journal Title: AAPS PharmSciTech - Year 2014, Vol 15, Issue 3

Abstract

Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.

Authors and Affiliations

Johann Combrinck, Anja Otto, Jeanetta du Plessis

Keywords

Related Articles

Mixed Polyethylene Glycol-Modified Breviscapine-Loaded Solid Lipid Nanoparticles for Improved Brain Bioavailability: Preparation, Characterization, and In Vivo Cerebral Microdialysis Evaluation in Adult Sprague Dawley Rats

Breviscapine is used in the treatment of ischemic cerebrovascular diseases, but it has a low bioavailability in the brain due to its poor physicochemical properties and the activity of P-glycoprotein efflux pumps located...

Preparation and Characterization of an Advanced Medical Device for Bone Regeneration

Tridimensional scaffolds can promote bone regeneration as a framework supporting the migration of cells from the surrounding tissue into the damaged tissue and as delivery systems for the controlled or prolonged release...

A Novel Approach in Distinguishing Between Role of Hydrodynamics and Mechanical Stresses Similar to Contraction Forces of GI Tract on Drug Release from Modified Release Dosage Forms

The objective of this study was to determine the influence of mechanical stresses simulating gastrointestinal contraction forces of 2.0 N (stomach) and 1.2 N (intestine) on the gel properties and drug release characteris...

Construction and Validation of Binary Phase Diagram for Amorphous Solid Dispersion Using Flory–Huggins Theory

Drug–polymer miscibility is one of the fundamental prerequisite for the successful design and development of amorphous solid dispersion formulation. The purpose of the present work is to provide an example of the...

Application of Ethylcellulose Coating to Hydrophilic Matrices: A Strategy to Modulate Drug Release Profile and Reduce Drug Release Variability

The online version of this article (doi:10.1208/s12249-014-0128-5) contains supplementary material, which is available to authorized users.

Download PDF file
  • EP ID EP682382
  • DOI  10.1208/s12249-014-0081-3
  • Views 99
  • Downloads 0

How To Cite

Johann Combrinck, Anja Otto, Jeanetta du Plessis (2014). Whey Protein/Polysaccharide-Stabilized Emulsions: Effect of Polymer Type and pH on Release and Topical Delivery of Salicylic Acid. AAPS PharmSciTech, 15(3), -. https://www.europub.co.uk/articles/-A-682382