Antioxidant and anti-caspase 3 effect of chitosan-Pinus merkusii extract nanoparticle against lead acetate-induced testicular toxicity in rat
Journal Title: Asian Pacific Journal of Reproduction - Year 2019, Vol 8, Issue 1
Abstract
Objective: To investigate the antioxidant and anti-caspase 3 effect of chitosan-Pinus merkusii extract nanoparticle on lead acetate-induced toxicity in rat testis. Methods: Chitosan-Pinus merkusii nanoparticles were identified by dynamic light scattering and scanning electron microscope. The male rats were divided into control group (rats were given with distilled water); lead acetate group [rats were injected with lead acetate 20 mg/kg body weight (BW) i.p.], and the treatment group (rats were given the chitosan-Pinus merkusii nanoparticle 150 mg; 300 mg; 600 mg/kg BW orally and were injected with lead acetate 20 mg/kg BW). The testis tissues were collected to evaluate the malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), histological evaluations of testis damage, and the caspase 3 mRNA expression was measured by reverse transcription-polymerase chain reaction. Results: The dynamic light scattering showed that the size of chitosan-Pinus merkusii nanoparticle was (530.2±38.2) nm. The scanning electron microscope images of the chitosan-Pinus merkusii nanoparticles showed an irregular shape, and the morphology surface showed the rough surface. The treatment with lead acetate resulted in significantly increasing MDA level and caspase 3 mRNA expression, and significantly decreasing level of SOD and GPx when compared with control group. The treatment with the chitosan-Pinus merkusii nanoparticle 600 mg/kg BW but not 150 and 300 mg/kg BW significantly decreased the MDA levels, caspase 3 mRNA expression, and also increased level of SOD and GPx when compared with lead acetate group. The lead acetate induced loss of the normal structure of testicular cells and necrosis, whereas treatment with chitosan-Pinus merkusii nanoparticle inhibited testicular cell necrosis. Conclusions: It can be concluded that chitosan-Pinus merkusii nanoparticle protects rat testis from oxidative damage and apoptosis caused by lead acetate, through increasing antioxidant and inhibiting caspase 3 expression.
Authors and Affiliations
Sri Agus Sudjarwo, Chairul Anwar, Giftania Wardani, Koerniasari Eraiko
Effect of foot and mouth disease vaccination on seminal antioxidant profiles of mithun (Bos frontalis)
Objective: To assess the deleterious effects of foot and mouth disease vaccination on antioxidant profiles as well as oxidative stress in the semen of breeding mithun bulls. Methods: A total of 160 semen samples were col...
Effect of voltage-gated sodium channels blockers on motility and viability of human sperm in vitro
Objective: To test the effect of voltage-gated sodium channels (VGSCs) blockers on the motility and viability of human sperm in-vitro and to evaluate the tested compounds as potential contact spermicidal. Methods: Sperm...
Biofertilizing efficiency of Sargassum polycystum extract on growth and biochemical composition of Vigna radiata and Vigna mungo
Objective: To evaluate the effect of marine brown alga Sargassum polycystum extract on growth and biochemical parameters of Vigna radiata and Vigna mungo. Methods: Different concentrations of algal extracts (0.5%, 1.0%,...
Impact of electromagnetic radiation exposure during pregnancy on embryonic skeletal development in rats
Objective: To evaluate the teratogenic effect of mobile phone radiation exposure during pregnancy on embryonic skeletal development at the common used mobile phone frequency in our environment. Methods: Sixty female Spra...
Diabetes mellitus and male infertility
Infertility is prevalent in about 10%-25% of couples in their reproductive age, analogous to 60-80 million infertile couples globally. Of these infertility cases, 10%-30% are exclusively attributed to a problem of the ma...