Сплайн-метод наближеного розв’язку диференціальних рівнянь з розривними коефіцієнтами
Journal Title: Математичне моделювання - Year 2016, Vol 1, Issue 1
Abstract
A SPLINE METHOD FOR APPROXIMATE SOLUTION OF DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS COEFFICIENTS Dronov S.G. Abstract This study presents an algorithm for approximate solving of a marginal problem for the common secondorder linear differential equations with discontinuous coefficients based using a non-uniform mesh cubic spline asymptotically converging with the interpolation spline of the exact solution. A special feature of this approach is that it guarantees an existence of the approximate solution and the possibility to control it. References 1. Zav'yalov Yu.S., Kvasov V.I., Miroshnichenko V.L. Metody splayn-funktsiy. M., 1980. 2. Korneychuk N.P. Splayny v teorii priblizheniya. M., 1984. 3. Miroshnichenko V.L. Reshenie kraevoy zadachi dlya differentsial'nogo uravneniya metodom splaynfunktsiy. Skhema povyshennoy tochnosti.// Izv. AN Kaz. SSR. Ser. Fizika-Matematika. 1973. № 3. S. 37-42. 4. Dronov S.G., Ligun A.A. Ob odnom splayn- metode resheniya kraevoy zadachi.// UMZh. !989. T. 41, № 5. S. 703 – 707. 5. Dronov S.G. O priblizhenii splaynami resheniya kraevoy zadachi.// Issledovaniya po sovremennym problemam summirovaniya i priblizheniya funktsiy i ikh prilozheniyam. Dnepropetrovsk: DGU. 1987. S. 30-37. 6. Dronov S.G. Primenenie splaynov po neravnomernoy setke k priblizhennomu resheniyu kraevykh zadach.// Voprosy optimal'noy approksimatsii funktsiy i summirovaniya ryadov. Dnepropetrovsk: DGU. 1988. S. 26-32. 7. Dronov S.G., Khudaya Zh.V. O splayn-skheme povyshennoy tochnosti resheniya zadachi Koshi.// Priblizhenie funktsiy i summirovanie ryadov. Dnepropetrovsk: DGU. 1992. S. 29-38. 8. Dronov S.G., Khudaya Zh.V. O splayn-skheme povyshennoy tochnosti resheniya zadachi Koshi dlya uravneniya s razryvnymi koeffitsientami.// Matematichne modelyuvannya. Dneprodzerzhisk: DGTU. 1994. № 1. S. 17-20. 9. Zhanlav T. O predstavlenii interpolyatsionnykh kubicheskikh splaynov cherez V-splayny// Metody splayn-funktsiy. Vychislitel'nye sistemy. Novosibirsk, 1981. Vyp. 37.
Authors and Affiliations
С. Г. Дронов
Вибір махових мас ланок передаточних механізмів на основі оптимізації передаточної функції
On the basis of a mathematical model of the transmission mechanism were obtained dependences which allowed calculating during design phase the corresponding mass of gearwheels that can play the role of flywheel masses of...
Моделирование получения жаростойких защитных покрытий в условиях самораспространяющегося высокотемпературного синтеза
MODELING OF OBTAINING WELDING PROTECTIVE COATINGS UNDER THE CONDITIONS OF SELF-SPREADING HIGH-TEMPERATURE SYNTHESIS Beigyl O.A., Sereda D.B. Abstract Practical use of carbon-carbon composite materials (CCCM) in high-tem...
Вычисление максимальних абсолютных погрешностей округления чисел вIEEE-стандарте
The article describes the features of the standard methods of rounding floating point numbers in the calculations on the computer, precision floating-point numbers. In the article obtained the formulas for calculating th...
Моделювання близького порядку аморфних оксидів Zr1-xYxO2
MODELLING OF SHOT-RANGE ORDER OF AMORPHOUS OXIDES OF Zr1-xYxO2 Baskevich A.S., Vereshchak V.G., Nikolenko M.V. Abstract The use of stabilized zirconia dioxides as high-strength materials for structural materials, bioc...
Математическое моделирование процесса принятия решений с учетом уровня компетентности менеджера проекта
MATHEMATICAL MODELING OF THE DECISION-MAKING PROCESS TAKING INTO ACCOUNT THE LEVEL OF COMPETENCE OF THE PROJECT MANAGER A.I. Mazurkevich, V.U. Hrygorenko, S.V. Antonenko Abstract According to the research of the Associa...